12 resultados para epithelial ovarium cells

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tiivistelmä ReferatAbstract Metabolomics is a rapidly growing research field that studies the response of biological systems to environmental factors, disease states and genetic modifications. It aims at measuring the complete set of endogenous metabolites, i.e. the metabolome, in a biological sample such as plasma or cells. Because metabolites are the intermediates and end products of biochemical reactions, metabolite compositions and metabolite levels in biological samples can provide a wealth of information on on-going processes in a living system. Due to the complexity of the metabolome, metabolomic analysis poses a challenge to analytical chemistry. Adequate sample preparation is critical to accurate and reproducible analysis, and the analytical techniques must have high resolution and sensitivity to allow detection of as many metabolites as possible. Furthermore, as the information contained in the metabolome is immense, the data set collected from metabolomic studies is very large. In order to extract the relevant information from such large data sets, efficient data processing and multivariate data analysis methods are needed. In the research presented in this thesis, metabolomics was used to study mechanisms of polymeric gene delivery to retinal pigment epithelial (RPE) cells. The aim of the study was to detect differences in metabolomic fingerprints between transfected cells and non-transfected controls, and thereafter to identify metabolites responsible for the discrimination. The plasmid pCMV-β was introduced into RPE cells using the vector polyethyleneimine (PEI). The samples were analyzed using high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) coupled to a triple quadrupole (QqQ) mass spectrometer (MS). The software MZmine was used for raw data processing and principal component analysis (PCA) was used in statistical data analysis. The results revealed differences in metabolomic fingerprints between transfected cells and non-transfected controls. However, reliable fingerprinting data could not be obtained because of low analysis repeatability. Therefore, no attempts were made to identify metabolites responsible for discrimination between sample groups. Repeatability and accuracy of analyses can be influenced by protocol optimization. However, in this study, optimization of analytical methods was hindered by the very small number of samples available for analysis. In conclusion, this study demonstrates that obtaining reliable fingerprinting data is technically demanding, and the protocols need to be thoroughly optimized in order to approach the goals of gaining information on mechanisms of gene delivery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tooth development is regulated by sequential and reciprocal interactions between epithelium and mesenchyme. The molecular mechanisms underlying this regulation are conserved and most of the participating molecules belong to several signalling families. Research focusing on mouse teeth has uncovered many aspects of tooth development, including molecular and evolutionary specifi cs, and in addition offered a valuable system to analyse the regulation of epithelial stem cells. In mice the spatial and temporal regulation of cell differentiation and the mechanisms of patterning during development can be analysed both in vivo and in vitro. Follistatin (Fst), a negative regulator of TGFβ superfamily signalling, is an important inhibitor during embryonic development. We showed the necessity of modulation of TGFβ signalling by Fst in three different regulatory steps during tooth development. First we showed that tinkering with the level of TGFβ signalling by Fst may cause variation in the molar cusp patterning and crown morphogenesis. Second, our results indicated that in the continuously growing mouse incisors asymmetric expression of Fst is responsible for the labial-lingual patterning of ameloblast differentiation and enamel formation. Two TGFβ superfamily signals, BMP and Activin, are required for proper ameloblast differentiation and Fst modulates their effects. Third, we identifi ed a complex signalling network regulating the maintenance and proliferation of epithelial stem cells in the incisor, and showed that Fst is an essential modulator of this regulation. FGF3 in cooperation with FGF10 stimulates proliferation of epithelial stem cells and transit amplifying cells in the labial cervical loop. BMP4 represses Fgf3 expression whereas Activin inhibits the repressive effect of BMP4 on the labial side. Thus, Fst inhibits Activin rather than BMP4 in the cervical loop area and limits the proliferation of lingual epithelium, thereby causing the asymmetric maintenance and proliferation of epithelial stem cells. In addition, we detected Lgr5, a Wnt target gene and an epithelial stem cell marker in the intestine, in the putative epithelial stem cells of the incisor, suggesting that Lgr5 is a marker of incisor stem cells but is not regulated by Wnt/β-catenin signalling in the incisor. Thus the epithelial stem cells in the incisor may not be directly regulated by Wnt/β-catenin signalling. In conclusion, we showed in the mouse incisors that modulating the balance between inductive and inhibitory signals constitutes a key mechanism regulating the epithelial stem cells and ameloblast differentiation. Furthermore, we found additional support for the location of the putative epithelial stem cells and for the stemness of these cells. In the mouse molar we showed the necessity of fi ne-tuning the signalling in the regulation of the crown morphogenesis, and that altering the levels of an inhibitor can cause variation in the crown patterning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paracrine regulation between the components of the tumour microenvironment cancer cells, activated fibroblasts, immune and endothelial cells is under intense investigation. The signals between the different cell types are mediated by soluble factors, such as growth factors, proinflammatory cytokines and proteolytic enzymes. Nemosis is an experimental in vitro model of fibroblast activation, leading to increased production of such mediators. Nemotic activation of fibroblasts occurs as they are forced to cluster thereby forming a multicellular spheroid. The aim of the present studies was to elucidate the mechanisms underlying the nemotic response of cancer-associated fibroblasts (CAF) and the role of nemosis in paracrine regulation between activated fibroblasts and benign and malignant epithelial cells. The results presented in this thesis demonstrate that the nemotic response of CAFs and normal fibroblasts differs, and inter-individual variations exist between fibroblast populations. In co-culture experiments, fibroblasts increased colony formation of squamous cell carcinoma (SCC) cells, and CAFs further augmented this, highlighting the tumour-evolving properties of CAFs. Furthermore, fibroblast monolayers in those co-cultures started to cluster spontaneously. This kind of spontaneous nemosis response might take place also in vivo, although more direct evidence of this still needs to be obtained. The HaCaT skin carcinoma progression model was used to study the effects of benign and malignant keratinocytes on fibroblast nemosis. Benign HaCaT cells inhibited fibroblast nemosis, observed as inhibition of cyclooxygenase 2 (COX-2) induction in nemotic spheroids. In contrast, malignant HaCaTs further augmented the nemotic response by increasing expression of COX-2 and the growth factors hepatocyte growth factor / scatter factor (HGF/SF) and vascular endothelial growth factor (VEGF), as well as causing a myofibroblastic differentiation of nemotic fibroblasts into fibroblasts resembling CAFs. On the other side of this reciprocal signalling, factors secreted into conditioned medium by the nemotic fibroblasts promoted proliferation and motility of the HaCaT cell lines. Notably, the nemotic fibroblast medium increased the expression of p63, a transcription factor linked to carcinogenesis, also in the highly metastatic HaCaT cells. These results emphasize the paracrine role of factors secreted by activated fibroblasts in driving tumour progression. We also investigated the epithelial-mesenchymal transition (EMT) of the HaCaT clones in response to transforming growth factor β (TGF-β), which is a well-characterized inducer of EMT. TGF-β caused growth arrest and loss of epithelial cell junctions in the HaCaT derivatives, but mesenchymal markers were not induced, suggesting a partial, but not complete EMT response. Inflammation induced by COX-2 has been proposed to be a key mechanism in EMT of benign cells. Corroborating this notion, COX-2 was induced only in benign, not in malignant HaCaT derivatives. Furthermore, in cells in which TGF-β caused COX-2 induction, migration was clearly augmented. The concept of treating cancer is changing from targeting solely the cancer cells to targeting the whole microenvironment. The results of this work emphasise the role of activated fibroblasts in cancer progression and that CAFs should also be taken into consideration in the treatment of cancer. The results from these studies suggests that nemosis could be used as a diagnostic tool to distinguish in vitro activated fibroblasts from tumour stroma and also in studying the paracrine signalling that is mediated to other cell types via soluble factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human papillomaviruses (HPVs) are the causal agents of cervical cancer, which is the second most common cancer among women worldwide. Cellular transformation and carcinogenesis depend on the activities of viral E5, E6 and E7 proteins. Alterations in cell-cell contacts and in communication between epithelial cells take place during cervical carcinogenesis, leading to changes in cell morphology, increased cell motility and finally invasion. The aim of this thesis was to study genome-wide effects of the HPV type 16 (HPV-16) E5 protein on the expression of host cell messenger RNAs (mRNAs) and microRNAs by applying microarray technology. The results showed that the HPV-16 E5 protein alters several cellular pathways involved in cellular adhesion, motility and proliferation as well as in the extracellular matrix. The E5 protein was observed to enhance wound healing of epithelial cell monolayers by increasing cell motility in vivo. HPV-16 E5-induced alterations in the expression of cellular microRNAs and their target genes seem to favour increased proliferation and tumorigenesis. E5 was also shown to affect the expression of adherens junction proteins in HaCaT epithelial keratinocytes. In addition, a study of a membrane cytoskeletal cross-linker protein, ezrin, revealed that when activated, it localizes to adherens junctions. The results suggest that ezrin distribution to forming adherens junctions is due to Rac1 activity in epithelial cells. These studies reveal for the first time the holistic effects of HPV-16 E5 protein in promoting precancerous events in epithelial cells. The results contribute to identifyinging novel markers for cervical precancerous stages and to predicting disease behaviour.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The equilibrium between cell proliferation, differentiation, and apoptosis is crucial for maintaining homeostasis in epithelial tissues. In order for the epithelium to function properly, individual cells must gain normal structural and functional polarity. The junctional proteins have an important role both in binding the cells together and in taking part in cell signaling. Cadherins form adherens junctions. Cadherins initiate the polarization process by first recognizing and binding the neighboring cells together, and then guiding the formation of tight junctions. Tight junctions form a barrier in dividing the plasma membranes to apical and basolateral membrane domains. In glandular tissues, single layered and polarized epithelium is folded into tubes or spheres, in which the basal side of the epithelial layer faces the outer basal membrane, and the apical side the lumen. In carcinogenesis, the differentiated architecture of an epithelial layer is disrupted. Filling of the luminal space is a hallmark of early epithelial tumors in tubular and glandular structures. In order for the transformed tumor cells to populate the lumen, enhanced proliferation as well as inhibition of apoptosis is required. Most advances in cancer biology have been achieved by using two-dimensional (2D) cell culture models, in which the cells are cultured on flat surfaces as monolayers. However, the 2D cultures are limited in their capacity to recapitulate the structural and functional features of tubular structures and to represent cell growth and differentiation in vivo. The development of three-dimensional (3D) cell culture methods enables the cells to grow and to be studied in a more natural environment. Despite the wide use of 2D cell culture models and the development of novel 3D culture methods, it is not clear how the change of the dimensionality of culture conditions alters the polarization and transformation process and the molecular mechanisms behind them. Src is a well-known oncogene. It is found in focal and adherens junctions of cultured cells. Active src disrupts cell-cell junctions and interferes with cell-matrix binding. It promotes cell motility and survival. Src transformation in 2D disrupts adherens junctions and the fibroblastic phenotype of the cells. In 3D, the adherens junctions are weakened, and in glandular structures, the lumen is filled with nonpolarized vital cells. Madin-Darby canine kidney (MDCK) cells are an epithelial cell type commonly used as a model for cell polarization. Its-src-transformed variants are useful model systems for analyzing the changes in cell morphology, and they play a role in src-induced malignant transformation. This study investigates src-transformed cells in 3D cell cultures as a model for malignant transformation. The following questions were posed. Firstly: What is the role of the composition and stiffness of the extracellular matrix (ECM) on the polarization and transformation of ts v-src MDCK cells in 3D cell cultures? Secondly: How do the culture conditions affect gene expression? What is the effect of v-src transformation in 2D and in 3D cell models? How does the shift from 2D to 3D affect cell polarity and gene expression? Thirdly: What is the role of survivin and its regulator phosphatase and tensin homolog protein (PTEN) in cell polarization and transformation, and in determining cell fate? How does their expression correlate with impaired mitochondrial function in transformed cells? In order to answer the above questions, novel methods of culturing and monitoring cells had to be created: novel 3D methods of culturing epithelial cells were engineered, enabling real time monitoring of a polarization and transformation process, and functional testing of 3D cell cultures. Novel 3D cell culture models and imaging techniques were created for the study. Attention was focused especially on confocal microscopy and live-cell imaging. Src-transformation disturbed the polarization of the epithelium by disrupting cell adhesion, and sensitized the cells to their environment. With active src, the morphology of the cell cluster depended on the composition and stiffness of the matrix. Gene expression studies revealed a broader impact of src transformation than mere continuous activity of src-kinase. In 2D cultures, src transformation altered the expression of immunological, actin cytoskeleton and extracellular matrix (ECM). In 3D, the genes regulating cell division, inhibition of apoptosis, cell metabolism, mitochondrial function, actin cytoskeleton and mechano-sensing proteins were altered. Surprisingly, changing the culture conditions from 2D to 3D affected also gene expression considerably. The microarray hit survivin, an inhibitor of apoptosis, played a crucial role in the survival and proliferation of src-transformed cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Enamel matrix derivative Emdogain® (EMD) is a commercially available tissue extract preparation of porcine enamel origin. Studies have shown EMD to be clinically useful in promoting periodontal regeneration. EMD has been widely used in periodontal therapy for over ten years, but the mechanism of its action and the exact composition are not completely clear. EMD is predominantly amelogenin (>90%). However, unlike amelogenin, EMD has a number of growth factor-like effects and it has been shown to enhance the proliferation, migration and other cellular functions of periodontal ligament fibroblasts and osteoblasts. In contrast, the effects of EMD on epithelial cell lines and in particular on oral malignant cells have not been adequately studied. In addition, EMD has effects on the production of cytokines by several oral cell lines and the product is in constant interaction with different oral enzymes. Regardless of the various unknown properties of EMD, it is said to be clinically safe in regenerative procedures, also in medically compromised patients. The aim of the study was to examine whether gingival crevicular fluid (GCF), which contains several different proteolysis enzymes, could degrade EMD and alter its biological functions. In addition, the objective was to study the effects of EMD on carcinogenesis-related factors, in particular MMPs, using in vitro and in vivo models. This study also aimed to contribute to the understanding of the composition of EMD. GCF was capable of degrading EMD, depending on the periodontal status, with markedly more degradation in all states of periodontal disease compared to healthy controls. EMD was observed to stimulate the migration of periodontal ligament fibroblasts (PLF), whereas EMD together with GCF could not stimulate this proliferation. In addition, recombinant amelogenin, the main component of EMD, decreased the migration of PLFs. A comparison of changes induced by EMD and TGF-β1 in the gene profiles of carcinoma cells showed TGF-β1 to regulate a greater number of genes than EMD. However, both of the study reagents enhanced the expression of MMP-10 and MMP-9. Furthermore, EMD was found to induce several factors closely related to carcinogenesis on gene, protein, cell and in vivo levels. EMD enhanced the production of MMP-2, MMP-9 and MMP-10 proteins by cultured carcinoma cells. In addition, EMD stimulated the migration and in vitro wound closure of carcinoma cells. EMD was also capable of promoting metastasis formation in mice. In conclusion, the diseased GCF, containing various proteases, causes degradation of EMD and decreased proliferation of PLFs. Thus, this in vitro study suggests that the regenerative effect of EMD may decrease due to proteases present in periodontal tissues during the inflammation and healing of the tissues in vivo. Furthermore, EMD was observed to enhance several carcinoma-related factors and in particular the production of MMPs by benign and malignant cell lines. These findings suggest that the clinical safety of EMD with regard to dysplastic mucosal lesions should be further investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and that aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication and possibly through polyploid intermediate states. Here, we used a novel cell spot microarray technique to identify genes with a loss-of-function effect inducing polyploidy and/or allowing maintenance of polyploid cell growth of breast cancer cells. Integrative genomics profiling of candidate genes highlighted GINS2 as a potential oncogene frequently overexpressed in clinical breast cancers as well as in several other cancer types. Multivariate analysis indicated GINS2 to be an independent prognostic factor for breast cancer outcome (p = 0.001). Suppression of GINS2 expression effectively inhibited breast cancer cell growth and induced polyploidy. In addition, protein level detection of nuclear GINS2 accurately distinguished actively proliferating cancer cells suggesting potential use as an operational biomarker.